
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 1

Scantegrity II: End-to-End Verifiability by Voters of
Optical Scan Elections Through Confirmation Codes

David Chaum, Richard T. Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc, Ronald L. Rivest,
Peter Y. A. Ryan, Emily Shen, Alan T. Sherman, and Poorvi L. Vora

Abstract—Scantegrity II is an enhancement for existing paper
ballot systems. It allows voters to verify election integrity—
from their ballot selections all the way to the final tally—
by noting codes and checking for them online. Voters mark
Scantegrity II ballots just as with conventional optical scan, but
using a special ballot marking pen. Marking a selection with this
pen makes legible an otherwise invisible pre-printed confirmation
code. Confirmation codes are independent and random for each
potential selection on each ballot.

To verify that their individual votes are recorded correctly,
voters can look up their ballot serial numbers online and
verify that their confirmation codes are posted correctly. The
confirmation codes do not allow voters to prove how they voted.
However, the confirmation codes constitute convincing evidence
of error or malfeasance in the event that incorrect codes are
posted online. Correctness of the final tally with respect to the
published codes is proven by election officials in a manner that
can be verified by any interested party. Thus, compromise of
either the chain of custody on the ballots or the software systems
cannot undetectably affect the election integrity.

Scantegrity II has been implemented and tested in small
elections, in which ballots were scanned either at the polling
place or centrally later. Preparations for its use in a public sector
election have commenced.

I. INTRODUCTION

PAPER ballots dominate elections globally, apart from a
few exceptions such as Brazil and India. In the United

States, optical scan systems and DREs began to replace paper
ballots and lever systems in about 1980 [2]. More recently,
however, due to reliability failures and security vulnerabilities,
the trend has been toward replacing DREs with paper ballot
systems, including optical scan systems [30]. Optical scan,
however, is not without its own demonstrated and inherent
integrity vulnerabilities (see, for example, [29]). Undetected
errors, unintentional or malicious, in the scanning or tallying
software can cause undetected errors in the electronic tally.
Improperly printed ballots enable a variety of attacks on
integrity. Misplaced ballots or breaches in chain-of-custody
render even expensive manual recounts ineffective. Further,
the transparency offered by manual recounts is at best limited
to those officials and observers in attendance. Scantegrity II is
an enhancement for optical scan voting systems that addresses
the above deficiencies, while also providing ballot secrecy
guarantees under reasonable assumptions.

Stefan Popoveniuc and Poorvi L. Vora acknowledge the partial support
of this work by NSF-CNS-0831149. Aleksander Essex and Jeremy Clark
acknowledge the partial support of this work by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

In Scantegrity II, voters mark ballots using a special ballot-
marking pen, which makes legible pre-printed confirmation
codes corresponding to voter selections. The link between
confirmation codes and voter selections is cryptographically
protected, with the key(s) being shared by election officials.
Voters may note down their confirmation codes onto a chit
that is detachable from the ballot. After the election, all voted
confirmation codes are posted online, where voters may check
them. The final tally is computed in a verifiable manner from
the posted confirmation codes.

The functionality of Scantegrity II is enabled by the use of
several types of ink with special properties, in the following
ways.

• Confirmation codes and ballot ovals are printed with
a special ink that darkens when it reacts with the ink
in the ballot-marking pen; the confirmation code ink
reacts more slowly than the ballot oval ink, and hence
darkens several minutes after the oval does. Thus, the
code is visible for several minutes after being marked,
during which the voter may note it on the chit. On the
other hand, the confirmation code may be assumed to
be indistinguishable from its background in an unmarked
oval. This allows the Scantegrity II system to provide a
confirmation code to the voter only after the voter has
made the corresponding ballot selection.

• The Scantegrity II chit bears two serial numbers that are
required of the voter in order to check the confirmation
codes online. These serial numbers are also indistinguish-
able from the background until made legible through the
use of a decoding pen. The ink in the decoding pens is
different from the ink in the ballot-marking pens. Poll
workers reveal the serial numbers using a decoding pen
after the ballot is cast. This prevents voters from falsely
claiming that a valid confirmation code, obtained from
an uncast ballot, came from a cast ballot. When it is not
possible to use the different inks required for chit serial
numbers and decoder pens, it is possible to achieve a
similar end, though with weaker integrity guarantees, by
requiring that a record be kept, by polling officials and
observers, of serial numbers of spoiled ballots.

Scantegrity II has implemented procedures for printing with
the inks to make it virtually impossible to read unexposed
numbers and codes with the human eye. Further, it is rea-
sonable to assume that voters do not have access to ballots
outside the polling booth, and that they do not have access to
specialized equipment inside the polling booth. The inks thus

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 2

enable the Scantegrity II voting system to provide voters with
confirmation codes that correspond exactly to their selections,
and serial numbers that correspond exactly to valid cast ballots.

Scantegrity II, like several other systems (such as Prêt à
Voter [11], Punchscan [15], [16], [26], Scratch & Vote [1])
provides a mechanism for end-to-end verifiability of election
integrity: voters may verify that their selections are included
unmodified in the collection of selections; additionally, anyone
may verify that the tally is computed correctly from the
collection of selections. Voters and authorized observers may
“audit” ballots by requiring the voting system to expose
all confirmation codes and corresponding selections on the
audited ballots, and checking that these correspond to those
printed on the ballots. Audited ballots may not be used for
voting.

The verifiability property of Scantegrity II is independent of
voting system software correctness and ballot chain-of-custody
after ballots are cast. The proof of correctness made by those
running an election is based only on (a) the inability of the
voting system to change values once they have been committed
to, and (b) the unpredictability of choices made by voters and
election auditors—to verify confirmation codes online, to audit
ballots, and to audit the data provided by the voting system
regarding the processing of confirmation codes to obtain the
tally. The ability of the system to expose false charges of
election fraud is based on the ink properties described above.

Paper ballot systems possess inherent weaknesses with
respect to the requirement of ballot secrecy [20]. For example,
a voter can be identified by a distinctive manner of making
marks. The process of polling place scanning also introduces
privacy vulnerabilities; for example, the timing of voters
scanning ballots can be analyzed to improve an estimate of
the voter’s selections. Further, advances in forensic technology
make it possible to examine fingerprints on ballots. Finally, the
miniaturization of cameras poses challenges to the secrecy of
voter selections in all types of voting systems, whether paper-
based or not.

Scantegrity II is an overlay on paper ballot systems, and
cannot remove the inherent ballot secrecy limitations of the
underlying system. It does, however, attempt to limit any
additional ballot secrecy vulnerabilities. For example, the
linking of confirmation codes to votes requires the collusion
of a set of election officials, or the breaking of the security
of cryptographic techniques used. Further, the use of a slow-
reacting ink and a modification to the voting procedure can
ensure that information linking confirmation codes and ballot
serial numbers to voter selections can be removed from ballots
a few minutes after they are marked. As with regular opti-
cal scan, forensic attacks are possible—coercive adversaries
could, for example, use specialized equipment to attempt to
read the codes on the ballots. We assume these are too time-
consuming and unwieldy to be very practical, for two reasons.
First, we have instituted printing procedures to minimize the
effectiveness of such ballot analyses; these are described in
Section V. Second, simpler attacks, based on the fingerprint-
ing of the underlying paper using commodity scanners [12],
are possible against perforated paper-ballot-based end-to-end
voting systems in general (including Scantegrity and Prêt à

Voter).

A. Contributions

Scantegrity II and its predecessor Scantegrity [9] have
the following characteristics that distinguish them from other
systems that provide end-to-end verifiability:
• Compatibility with optical scan equipment: Scantegrity

and Scantegrity II do not require the replacement of
any optical scan polling place equipment. Both systems
interface cleanly with the underlying optical scan system,
requiring only a modified ballot and access to the results
from the scanners.

• Familiar ballot-marking procedure: The ballot-marking
procedure is very similar to that for a conventional optical
scan ballot. Opting into verification of election integrity
is up to the individual voter.

Two properties of Scantegrity II distinguish it from Scan-
tegrity.
• Scantegrity did not use invisible ink; all confirmation

codes were visible on the ballot. This allowed voters to
file spurious disputes concerning which codes appear on
the website, and required a tedious dispute resolution
process to resolve such issues. If voters cannot guess
confirmation codes or chit serial numbers, a dispute
regarding the correct recording of confirmation codes can
be resolved in Scantegrity II without the cumbersome
physical proof required by Scantegrity.

• Scantegrity II makes commitments to multiple Scanteg-
rity back-ends and uses a new audit procedure.

– While the Scantegrity audit procedure reveals some
information about individual votes, the Scantegrity II
audits reveal no additional information if the cryp-
tographic techniques used are secure, and election
officials do not collude to violate ballot secrecy.

– In Scantegrity, the probability that a cheating voting
system is undetected decreases exponentially with
the number of modified votes. In Scantegrity II, this
probability is independent of the number of modified
votes, but decreases exponentially with the number
of back-ends audited.

Scantegrity was described in [9]. Scantegrity II was first
described at EVT 2008 [8]. The present paper provides a
more detailed description; additionally, the use of chit serial
numbers to improve dispute resolution, the use of multiple
back-end instances, the new audit procedure, and a proposal
for accessibility are original to this paper.

B. Organization

In the next section, we provide a non-technical sketch of the
protocol as viewed by the voters, poll workers, and election
administrators. A complete technical specification of the entire
protocol is provided in Section III. Our security assumptions
and an analysis of the integrity and privacy provided by
Scantegrity II follows in Section IV. We also offer a discussion
of the use of invisible ink in Section V and the accessibility
of Scantegrity II to voters with disabilities in Section VI.

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 3

II. SCANTEGRITY II PROCEDURES

Scantegrity II provides integrity guarantees through the use
of a confirmation code provided to each voter for each ballot
selection. All confirmation codes are posted on a website after
the election, and all results are obtained through the process-
ing of these codes. The Scantegrity II protocol defines the
manner in which participants in the election—voters, election
administrators, and observers—interact with the voting system
in order to ensure that (i) confirmation codes are correctly
present on the ballots, (ii) marked confirmation codes are
correctly present on the website, and (iii) confirmation codes
are correctly processed to obtain the final tally. The protocol
is designed to enable the detection of election fraud if it has
occurred, as well as to prevent false charges of election fraud.
This section provides an (intentionally) informal description
of the protocol; its purpose is to provide a description that
is somewhat accessible to voters, poll workers, and election
administrators, and to prepare the reader for the more formal
description in the next section.

A. The Vote Casting Procedure

This section describes the vote-casting procedure, which is
very similar to that of a regular optical scan ballot. The slight
differences between the two are as follows. First, the unmarked
ballot itself looks slightly different: it bears a detachable
chit that can be used to note confirmation codes. Second,
while marking the ballot, voters will notice the appearance
of confirmation codes, which will also disappear after a
few minutes. Third, voters or observers may audit ballots to
determine whether printed confirmation codes correctly reflect
voter selections; such ballots may not then be cast. While we
have simplified the ballot audit procedure considerably, it does
not have a corresponding equivalent in the regular optical scan
protocol, and might appear complicated to voters and officials.
Similarly, spoiled ballots are discarded using a procedure that
is more complex than that used for optical scan. Fourth, voters
interact with a polling official after the vote is successfully
cast, in order to expose serial numbers on the receipt chit.

1) The Scantegrity II Ballot: The Scantegrity II ballot
consists of two parts: the main body and the chit; see Figure
1. Similar to an optical scan ballot, the main body of a
Scantegrity II ballot contains, for each contest, a list of
valid selections printed in a canonical order pre-determined
by polling place procedures (e.g., alphabetical, rotated across
precincts, etc.). Next to each possible selection is a markable
region, oval in shape.

Differing from an optical scan ballot, the background of
each oval is printed with a reacting ink. The confirmation
code corresponding to the selection for the particular ballot is
printed inside the oval. The ink used to print the confirmation
code is similar to that used for the oval background, but is
slow-reacting. Both inks look the same when printed on the
ballot paper; they may be assumed to be indistinguishable to
the human eye before the oval is marked with the ballot-
marking pen (See Section V for details on the validity of
this assumption). Further, we assume that voters will not
be able to take expensive spectral analysis equipment into

Fig. 1: A Scantegrity II ballot showing the main body (top)
with one marked position and machine-readable serial number;
left chit (bottom left) with a developed chit serial number and
confirmation code written in; and right chit (bottom right) with
an undeveloped chit serial number. This figure is meant to
demonstrate the parts of the ballot and does not represent the
actual final state of the portions after voting.

the polling booth; such equipment might aid in the ability
to distinguish between background and confirmation number.
Thus, we assume that, before marking, the oval has a single
color, and confirmation codes are indistinguishable from the
background of the oval; that is, confirmation codes are in-
visible. Additionally, a Scantegrity II ballot contains a ballot
serial number that is machine-readable but not easily read or
memorized by a human (e.g., a two-dimensional barcode).

The chit is attached to the bottom of the ballot via a
perforation, such that it can be easily detached. It has two
halves, left and right; the halves can be detached from each
other using a pair of scissors. On each half is a chit serial
number: the left chit serial number and the right chit serial
number. These chit serial numbers are distinct from each
other and from the ballot serial number; we describe later
how they are used to ensure that voters cannot make false
claims regarding confirmation codes on uncast ballots. Both
the left and right chit serial numbers are printed in invisible
ink such that they are neither human nor machine readable
before being decoded using a special decoder pen. Both the
left and right chit serial numbers are assumed to appear after
they are marked with the decoder pen.

2) Ballot Marking: Upon arrival, a voter is authorized to
cast a ballot, and is handed the next one in the pile; it is
enclosed in a privacy sleeve. At this time, she may choose
to audit a ballot, which she may choose from the existing
ballot pile. For details on the ballot audit procedure, see
Section II-B1.

In order to vote for a particular selection, the voter fills in the
corresponding oval using a ballot-marking pen. In accordance
with the invisible ink printed on the ballot, the background
of the oval will immediately turn dark, leaving a confirmation
code visible in the foreground. The relative darkness of any
marked ovals to unmarked ones will allow an optical scanner
employing dark mark logic to register the oval as marked. The

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 4

foreground of the oval will be human-readable and a voter
interested in verifying that her vote is in the virtual collection
of votes to be tallied may record the code on the chit portion
of the ballot. Uninterested voters may disregard the codes.

The link between a confirmation code and the corresponding
selection on a particular ballot is protected cryptographically.
We omit the details underlying the generation and protection
of the data until the next section. At this stage, however, we
do note the following. The disclosure of a confirmation code
does not reveal the selection, if the cryptographic techniques
used are assumed secure, and election officials are assumed
not to collude to determine the selection.

Although not apparent to the voter, the confirmation code is
printed in a slow-reacting invisible ink that will also turn dark,
but only after the passage of several minutes (e.g., five to seven
minutes). At this time, the oval will be completely dark and
the code will no longer be visible, leaving no human-readable
unique information on the ballot.

As an option, the two-dimensional bar-coded serial number
could also have slow reacting ink in its background such that
if a voter marked it, it would turn solid black.

Section V describes how a masking ink and appropriate
printing techniques may be used to reduce the ability to distin-
guish between the inks, even with the use of microscopes and
spectral equipment. Indeed, it may be assumed that the slow
and fast-reacting invisible inks are, for all practical purposes,
indistinguishable (i) before exposure and (ii) within T seconds
after both have been exposed, where T is the response time of
the slow-reacting ink. After a period long enough to include
reaction times, a filled-in Scantegrity II ballot provides, for all
practical purposes, an amount of information that is similar to
that on an optical scan ballot, and can be used in a manual
recount with a level of privacy very similar to that of optical
scan.

3) Spoiling the Ballot: If the voter makes an error in
marking a ballot or wishes to register a protest vote through
spoiling the ballot, it is returned to the poll worker. Without
seeing the contents of the ballot, the poll worker removes the
ballot from the privacy sleeve and detaches the right side of the
chit from the ballot. The main body and left chit are shredded
in view of the voter. The right chit is retained by the poll
worker and used to verify that the number of ballots issued
is identical to the sum of the number of ballots tallied, print-
audited, and spoiled. The number of spoiled ballots allowed
per voter is typically limited by pre-determined polling place
procedures.

4) Casting the Ballot: When the voter has satisfactorily
marked a ballot, it is returned to the poll worker. As previously,
the poll worker detaches the chit from the ballot. Further,
with the choices on the ballot still concealed, the poll worker
places the main body of the ballot into the scanner, which
records the ballot serial number and the marked choices. In
the preferred version of the protocol, voters are not allowed to
cast undervoted or overvoted ballots. If a voter does not wish
to vote for a particular candidate, she must make a selection
of “none of the above”. If the scanner detects an undervote
or overvote, the voter is returned her ballot, and will spoil it
and re-enter the issuance procedure. Note that, in the US, the

requirement that a voter be notified of undervotes or overvotes
is not uncommon; in fact the Help America Vote Act requires
that voters be notified of overvotes if electronic equipment is
used. However, requiring that undervoted or overvoted ballots
not be cast is considerably stricter, and decreases the usability
of the voting system. The alternative version of the protocol
does not ban undervotes or overvotes in cast ballots. However,
in this version, a secure chain of custody is required to ensure
that unvoted races were not changed to voted ones, nor voted
races overvoted. Research on requiring neither the restriction
on undervoted and overvoted ballots, nor a secure chain of
custody, is underway.

In order for the scanner to read the serial number, it must
be encoded in a two-dimensional barcode as the scanner can
only recognize marked or unmarked regions.

After a successful scan, the two serial numbers on the
chit are developed by the poll worker. The voter may leave
with the chit. It is expected that public interest groups will
make available the possibility of creating a copy of chits to
alleviate the need for concerned but time-constrained voters to
personally participate in auditing the election.

5) Casting without Automation: For polling places without
adequate voting technology or in the event of a power failure,
Scantegrity II may still proceed with the voter being issued
the chit in the same manner. The main body of the ballot
will, instead of being scanned, be placed into a sealed ballot
box that has been certified as being empty prior to sealing.
If scanning technology is unavailable at the polling place, the
ballots may be transported to a central scanning location.

6) Accounting for Ballots: At the end of the day, poll
workers and official observers make a note of the numbers of
spoiled, voted and audited ballots, and ensure that their sum
is equal to the number of used ballots. These numbers are
made publicly available; this prevents ballot stuffing. Further,
they note down the exposed chit serial numbers of voted,
spoiled and audited ballots, so these cannot be changed after
the election.

B. Election Audit Procedures

A voter may participate in auditing the election in several
ways. In addition to checking the confirmation numbers on her
ballot, she may audit a printed ballot, and check the processing
of confirmation codes. Election observers may also participate
in the latter processing check.

1) Auditing a Printed Ballot: Voters wishing to audit a
printed ballot may choose one from the ballot pile; we refer to
the process of auditing the ballot as the print audit. They will
each be issued a ballot main body and the left or right half
of the chit, with the serial number activated using the decoder
pen; which half is chosen may be determined by a flipped
coin. The other half of the chit is removed and retained by
the pollworker in a clear box on the poll worker table. At
her leisure, the voter fully marks the ballot to reveal all the
confirmation codes, which she may check using the procedure
in the following section.

2) Checking Confirmation Numbers: At a pre-arranged
time after the polls close, voters who recorded the confirmation

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 5

codes associated with the candidates they voted for, or those
who wish to check the confirmation codes on a print-audited
ballot, may visit a website where they will be prompted for
the serial number on the chit. In the case of voted ballots, the
voter will have two serial numbers—left and right; either is
suitable to identify the ballot uniquely. Upon entering a serial
number, the website will report the confirmation codes in the
positions it believes were marked for voted ballots, but will
not report the candidates associated with these codes. For this
reason, providing a copy of the confirmation codes in no way
undermines the secrecy of the ballot. Voters are encouraged
to share their confirmation codes, share photographs of their
chits, or post screen-captures of the results. In the case of an
audited ballot, entering the serial number will similarly report
the confirmation codes that should appear on the ballot and,
only in this case, also reveal the candidates associated with
each code.

All confirmation codes and their associated candidates are
committed to prior to the election to ensure the values or
associations cannot be changed. Thus, the audited ballots
provide probabilistic evidence that the confirmation codes
were correctly printed on the ballots. The correct and full
inclusion of confirmation codes from a voted ballot provides
probabilistic evidence that the votes were properly scanned and
not maliciously altered. Full details are provided in Section III,
and the strength of this evidence is quantified in Section IV.

3) Checking the Processing of Confirmation Numbers:
Due to the commitments to confirmation codes and candidates
before the beginning of the election, it is known that candidates
are mapped to confirmation codes and that this mapping
cannot be changed. Further, through the print audits, voters are
assured that this mapping has been faithfully transposed to the
printed ballots they marked. By checking the inclusion of their
confirmation codes, they are further assured that the marks
they made for candidates have been faithfully transposed to
confirmation codes consistent with those on the ballot. The
final step is to check that the confirmation codes are properly
mapped back to the correct candidates.

The protocol for achieving this check will be based on an
open specification. Voters may either obtain software from
a software provider they trust, or write their own software,
to check the processing of the confirmation numbers. All
required information for writing the software (such as the
format of the data and what the data are) is provided by
Scantegrity II to all interested parties. Those administering
the election are encouraged to appoint an independent auditor
to perform this check so as to provide at least one audit of
the tally computation from confirmation codes. The details of
this check are also provided in Section III.

C. Dispute Resolution Process

If any voters discover incorrect confirmation codes or ballots
that are incorrectly designated as voted, print-audited, or
spoiled, they may file disputes. In the case of a confirmation
code being incorrect, they may provide the confirmation code
they believe should be on the ballot. A voter’s knowledge of
a valid confirmation code on the ballot, that is not present on

the website, suggests an error or malfeasance; the validity of
the code can be established since the codes are committed to,
and the likelihood of guessing a correct code can be made low
through the use of longer codes (exact quantification to follow
in Section IV). If a voted ballot is incorrectly designated, the
voter can provide both chit serial numbers to prove that it
was voted. Similarly, if a print-audited ballot is incorrectly
designated, the voter or independent auditor can provide all
the confirmation codes on the ballot to prove that it was print-
audited. In the case when the voter knows all confirmation
codes in an overvoted ballot, this ballot’s designation cannot
be changed to print-audited as the voter knows both serial
numbers. In order to ensure that unvoted races are not voted,
and that properly-voted ballots are not changed to overvoted
ones, a restriction of not allowing undervotes or overvotes on
cast ballots is required.

III. CRYPTOGRAPHIC PROOF OF TALLY

The following describes the method used for proving the
correctness of an election outcome while simultaneously main-
taining voter anonymity. It is based on the protocol introduced
in [9] and [8], adapted to the enhanced polling procedures
described in Section II.

A. Ballot definition

For simplicity we consider a notation based on a single
contest ballot. Generalization to ballots containing multiple
races, as well as elections containing multiple ballot styles,
should be viewed as multiple independent executions of the
single contest case described herein. Let L = (s0, . . . , sn−1)
define a list of n ballot selections (e.g., candidates, choices,
etc).

B. Roles:

We consider three categories of entities participating in the
election with the acknowledgement that the entities are role-
based and thus an individual might possibly assume any or all
roles.
Voters: Voters are those with the authority to cast a ballot

in the election. We assume that voter authentication
(external to this discussion) is undertaken prior to ballot
issuing and that only authenticated voters are issued
ballots. In this section we will refer to a particular voter
as V .

Election Trustees: Let T be the set of t election trustees,
T1, . . . , Tt 2 T . The trustees engage in the cryptographic
protocol to setup and generate the correctness proofs of
the election. T would generally consist of public officials
and, optionally, candidate representatives. The protocol is
intended to proceed when a minimum number of trustees
are present—not requiring the presence of all so as to
mitigate the disruption caused by any individual trustee’s
absence at various stages of the protocol.

Verifier: The set of verifiers A consists of all agents verifying
the correctness proofs herein. The intention is that the
tally-correctness be “universally verifiable” as defined in

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 6

[28]—meaning that any voter, citizen or observer can
participate either directly, or through delegation, in the
verification of the tally if they so choose.

Other Entities: Poll workers are responsible for administering
the voting process, instructing and assisting voters, as
well as enforcing the registration, ballot issuing, marking
and casting procedures outlined in the previous section.

Finally, we require the existence of a public bulletin board
BB which implements an append-only public record. In prac-
tice it might be implemented as a mirrored public website.

C. Functions

In this section, we outline the main functions used in the
protocol. For a positive integer len, we use [len] to denote the
set of integers [0, 1, . . . , len� 1].

The functions consist of:
1) A parameter initialization function that, given a secu-

rity parameter, provides an election-specific nonce and
minimum key lengths.

2) A trustee threshold-key generation function that pro-
duces individual trustee keys for trustees and a master
key that can be reconstructed from a minimum threshold
τ number of trustee keys. This function takes as input
the election-specific nonce, the value of τ , and input bit
strings from the trustees, the entropy of which provides
the entropy of the keys generated.

3) A master-key reconstruction function that, given a set of
τ or more trustee keys, reconstructs the master key.

4) A subkey generation function that is a cryptographic
one-way function, accepts a master key and an identifier,
and outputs another key.

5) A keyed permutation function that, given a key and the
value len, generates a pseudo-random permutation of
integers in the range [len].

6) A cryptographic commitment function that is computa-
tionally hiding and computationally binding.

7) A ballot generation function that, given the candidate
list, the confirmation code alphabet and length, the
election master key, and the number of ballots required,
generates the master list of ballots.

Details of each of these functions follow.
Parameter Initialization: P Parameters(1p) accepts a

security parameter p and outputs a set of functional
parameters P including a unique election-specific nonce
λ selected in accordance with a public convention (not
considered here), and a specification of cryptographic
algorithms used to realize certain cryptographic one-
way and trapdoor functions, as well as specifying their
enforced minimum key lengths. For brevity, we will
omit continual reference to P by assuming all following
functions accept it as input.

Trustee Threshold-Key Generation: (k1, . . . , kt,K)
TrusteeKeys(ω1, . . . , ωt, τ, λ) accepts an arbitrary-
length random bit string, denoted ωi 2 f0, 1g∗, from
each trustee Ti, as well as a threshold 1 � τ � t,
specifying the number of trustees needed to reconstruct
a unique election master key K. It outputs a distinct

key for each of the trustees, k1, . . . , kt, as well as a
master key K. We do not consider the policy guidelines
for selecting trustees or τ in this section. K is such
that, if at least one ωi is uniformly distributed across
all possibilities, K will be as well. K is also dependent
on the election nonce λ (so if the same value of ωi were
supplied in a different election, K would be different).
K is only used as private input to other functions.
Each output key ki is transmitted over an authenticated
and physically untappable channel to the corresponding
trustee Ti.

Election Master Key Reconstruction: ;/K
ElectionKey(fj1, . . . , jng) accepts as input
a set fj1, . . . , jng of keys and outputs the
unique election master key K if and only if
jfj1, . . . , jng \ fk1, . . . , ktgj � τ . Otherwise it
returns a symbol (denoted by ;) indicating the function
failed to reconstruct the key.

The assumption for the two preceding algorithms is briefly
stated: given any unbounded adversary A, the advantage of A
(over a random guess) in guessing K, given any set containing
fewer than τ keys from k1, . . . , kt, is exactly zero. One suitable
construction is due to Pedersen [25], and has been suggested
for use in voting by Benaloh [3]. A suitable notion of an
untappable channel is the one due to Sako and Killian [28].
Sub-key Generation: κID SubKey(K, ID) is a crypto-

graphic one-way function that accepts a master key K
and identifier ID and outputs another key κID, where
ID defines what key is to be generated.

Keyed Permutation: π Perm(κ, len) accepts a key κ and
list length len, and outputs π : [len] ! [len] where
π is a permutation selected pseudo-randomly from the
set of possible permutations of len elements �len. The
function π depends on κ. We use the notation X ′(i)
X(π(i)) to denote the element-wise shuffle of a len-
element set X for 0 � i < len. Finally, we define a
special-case null index, denoted ;, in which π(;) = ;
for all π 2 �len.

Cryptographic Commitment: We consider a cryptographic
commitment protocol as including the following pair of
functions: �m Commit(κ,m) accepts a key κ and
an arbitrary length message m to obtain a commitment
�m. 0/1 Decommit(κ′,m′, x) accepts a commit-
ment x, key κ′, and message m′, and outputs 1 if
Commit(κ′,m′) = x. Otherwise it outputs 0.

The cryptographic assumptions for these algorithms are
briefly stated: given any probabilistic polynomial time-
bounded A producing messages m and m′, and keys κ and
κ′, the probability that m 6= m′ and Commit(κ′,m′) =
Commit(κ,m) is a negligible quantity in the security pa-
rameter p. That is, A cannot find two distinct messages that
produce the same commitment. This is an informal definition
of the computationally binding property of a commitment.
Additionally, given any probabilistic polynomial time-bounded
A,

jPr[A(Commit(κ,m)) = 1]� Pr[A(Commit(κ,m′)) = 1]j

is a negligible quantity in the security parameter p. That is,

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 7

A cannot distinguish between a commitment to m and one
to m′, if the commitments use the same key. This is an
informal definition of the computationally hiding property of
commitment functions.
Generate Ballots: P GenerateBallots(L,�, l,K, b) ac-

cepts ballot selection/candidate list L, confirmation-code
alphabet � (typically the set of alphanumeric characters),
confirmation-code length l, election master key K, and
the overall number of ballots to be generated b. P
contains three lists. The first is a list of b ballots, sorted
by serial number, each with n selections, each selection
associated with a confirmation code in �l. In addition
to this list, P also bears space for the voters’ choices
after ballots are filled, and a third list which bears the
corresponding candidates.

We deviate slightly from the notation introduced in [8].
Let P denote the canonical “master” list associating codes,
candidates, and voter-made marks, which we define as the
triple of (b�n)-element lists P = fQ,R,Sg. For all 0 � j < bn,

1) Q is a list of serial numbers and confirmation codes,
including serial numbers (α, β, γ) for each ballot, and
confirmation codes q for each selection in a ballot. Let
Q(j) = fαj , βj , γj , qjg,

2) R will eventually represent the list of scanned voter-
made marks r 2 f0, 1g indicating the absence or
presence of a mark (i.e., vote) made for an associated
selection. Let R(j) = rj , and let all rj be initialized to
0,

3) S is a list consisting of b repetitions of selec-
tion/candidate list L = (s0, . . . , sn−1). Let S(j) =
s(j mod n).

For notational convenience throughout the rest of this paper
we will use the index g to refer to a given ballot Bg , and its
associated voter-receipt Vg where g = αj = bj/bc. For any
j 6= j′ let αj = αj′ , βj = βj′ , γj = γj′ if bj/nc = bj′/nc.

Serial numbers β, γ shall be selected independently (without
replacement) by a secure pseudorandom number generator
seeded by the election master key K. These numbers shall
be selected from range defined by p, such that correctly
guessing an unknown β or γ would occur with a small (but
not cryptographically negligible) probability.

Finally, confirmation codes q will be independently selected
by a pseudorandom generator such that confirmation codes
are not repeated across a given ballot Bg , namely qj 6= qj′ if
bj/nc = bj′/nc, for distinct j, j′.

See Figure 2 for an example of a list of four ballots when
there are two candidates on the ballot, and confirmation codes
consist of three alphanumeric symbols.

D. Trusted Computation Platform
The protocol assumes the existence of a hardware device,

referred to as the trusted computation platform, which the
trustees use to evaluate the various functions described above.
This device relies on the following assumptions related to the
preservation of ballot secrecy:
• Private and authenticated input: the ability to receive

input from authenticated trustees via a physically untap-
pable channel,

• Private evaluation: the ability to evaluate a function
such that the intermediate values cannot be recovered
by passive or active attack of the hardware or software
components, and

• Correctness: the ability to attest that the functions be-
ing evaluated are equivalent to available and predefined
source code.

Note that the correctness assumption enables the trustees to
be certain that the required computations are being computed
correctly, and hence increases the reliability of the computation
from the perspective of the honest trustee. It does not affect the
ability of the voter or the auditor to detect a cheating trustee.

With the failure of any of these trust assumptions, it
may become possible for a malicious subset of trustees to
recover information related to the association between voting
intent and ballot serial number. For example, this can be
accomplished by observing a sufficient number of trustee
keys, observing intermediate state, or altering the functions
to overtly or covertly leak this information.

None of these assumptions, including the correctness as-
sumption, dictate the soundness of the tally. In the event that
any or all of these assumptions are subverted (or any crypto-
graphic assumption is found not to hold), the correctness of
the final tally can still be ascertained through the independent
verification mechanism described in this section.

E. Protocol

Setup Phase: The trustees in set T generate their thresh-
old trustee keys and initialize the bulletin board BB using
Candidate list L, security parameter p, number of ballots to
be generated b, valid trustee threshold list τ , code alphabet
�, code length l, and a heuristic security parameter I where
fL, p, b,�, l, τ, Ig is issued to T by an external entity not
considered herein. The audit described in this paper, which
is different from that described in previous publications on
Scantegrity or Scantegrity II, requires the commitment of the
voting system to several consistent back-ends, each of which
can be used to tally votes from the confirmation codes. I is
the number of back-ends constructed by the system.

Let the notation Xi(j) = xi,j denote the j-th element in
the of the i-th instance of a shuffled list Xi. Additionally
let the notation X ′i , X

′′
i and X ′′′i denote list X shuffled by

the composition of permutations (π(i,1)), (π(i,2) � π(i,1)) and
(π(i,3) � π(i,2) � π(i,1)), respectively.

Using a trusted computing platform, the trustees perform
the following computations:

1) Initialize security parameters: P Parameters(1p),
2) Initialize bulletin board: Post fP,L, p, b,�, l, τ, Ig, and

the specification of all functions to BB,
3) Generate trustee keys: Each trustee Ti contributes en-

tropy ωi and is issued corresponding trustee key ki via
an untappable channel with the trusted computing plat-
form (k1, k2, . . . , kt) TrusteeKeys(ω1, . . . , ωt, τ, λ).

4) Generate election key: assuming the trusted platform is
stateful during this phase, the election master key K is
generated by the previous step. (Note that key K must
not leave or be leaked from the trusted platform during

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 8

j α β γ q
0 0000 7973 4630 7LH
1 0000 7973 4630 WT9
2 0001 2567 1490 J3K
3 0001 2567 1490 TC3
4 0002 4900 7891 9JH
5 0002 4900 7891 J3K
6 0003 1631 5275 KWK
7 0003 1631 5275 H7T

(a) Table Q

j r
0 0
1 1
2 0
3 1
4 1
5 0
6 0
7 1

(b) Table R

j s
0 Alice

1

Alice

2

Alice

3

Alice

4

Alice

5

Alice

6

Alice

7

Alice(a) Table

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 9

j α β γ q
0 0000 7973 4630 WT9
1 0001 2567 1490 J3K
2 0001 2567 1490 TC3
3 0002 4900 7891 9JH
4 0002 4900 7891 J3K
5 0003 1631 5275 KWK
6 0003 1631 5275 H7T
7 0000 7973 4630 7LH

(a) Table Q′
1

j s
0 Bob
1 Alice
2 Bob
3 Alice
4 Bob
5 Alice
6 Alice
7 Bob

(b) Table S′′′
1

Fig. 3: Tables Q′ and S′′′ for the example of Figure 2. Q′ is Q permuted by π(1,1), which is an upward circular shift of
one unit, and S′′′ is S permuted by π(1,3) � π(1,2) � π(1,

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 10

α β γ q
0000 7973 4630 WT9
0001 2567 1490 TC3
0002 4900 7891 9JH
0003 1631 5275 H7T

(a) Revealed values of Table Q

j r
0 1
1 1
2 0
3 0
4 1
5 0
6 1
7 0

(b) Table R′′
1

Fig. 4: The revealed confirmation numbers, (entries in Q) and revealed table R′′1 , which is a shuffled version of R, using the
permutation π(1,2) � π(1,1), where π(1,1) is an upward circular shift of one unit, and π(1,2) corresponds to an upward circular
shift of two units. The tally will be “3 votes for Alice and one vote for Bob”. The permutations used are secret. Note
that, if R′′1 is permuted by π(1,3), the votes will be listed wrt candidate list S′′′ of Figure 3. If list Q′i of the same figure
is permuted by π(1,2), the confirmation codes will be listed as corresponding to the choices of R′′1 above. Note also that we
use simple permutations for the purposes of illustration. For the system itself, we advocate that each permutation be chosen
pseudo-randomly from the set of all possible permutations, without restricting this set to the set of simple permutations such
as cyclic permutations or swaps.

list S′′′i . Further, if list Q′i is permuted by π(i,2), the confirma-
tion codes will be listed in the order of the votes R′′i .

Audit Challenge and Response: In order to ensure robust,
correct behavior by the trustees and in turn, the correctness
of the election outcome, two audits are carried out. We
first describe the tally computation audit. For each back-end
committed to by the trustee, a coin flip determines whether
the trustees will demonstrate that the ballot marks of the
corresponding public table R′′i correspond correctly to (a)
the announced tally or (b) the public confirmation codes for
voted ballots. This is done by opening the commitments to the
permutation π(i,3)(j) 8 j or to the permutation π(i,2)(j) 8 j
respectively. Second, we describe the print audit. For values of
j, in the original ballot list Q, corresponding to print-audited
ballots, permutation values π(i,2)(j) and π(i,3)(j) are opened
8i. We now describe these audits in more detail.

1) Public challenge of trustees: some time after the trustees
have completed declaring the results and posting the
shuffled marks lists, each instance of Q′i,R

′′
i ,S
′′′
i is

challenged to be partially revealed for the purposes of
auditing. A fair public coin C is tossed I times providing
a series of audit challenges C 2 f0, 1gI , which are
posted to BB.

2) For the tally computation audit. For 0 � i < I and 0 �
j < (b � n) the trusted platform performs the following
actions:

a) If C(i) = 0, regenerate and publish the confirma-
tion codes Q′i and the association between Q′i and
R′′i . That is, regenerate and publish the following:
• The second permutation π(i,2)

• The commitment subkeys of π(i,2) :
κπ(i,2)(j) Subkey(K, f“π”, 2, i, jg) 8j

• The commitment subkeys to all elements of
Q′i : κxi,j

 Subkey(K, f“x”, i, jg) where x
= fα, β, γ, qg 8j

b) If C(i) = 1, regenerate and publish the permuted

candidate list S′′′i , as well as the association be-
tween R′′i and S′′′i . That is, regenerate and publish
the following:
• The third permutation π(i,3)

• The commitment subkeys of π(i,3) :
κπ(i,3)(j) Subkey(K, f“π”, 3, i, jg) 8j

• The commitment subkeys to all elements of S′′′i :
κsi,j

 Subkey(K, f“s”, i, jg) 8j
3) For the ballot audit, compute all permutation elements

and commitment keys not computed in tally audit and re-
quired for the purposes of demonstrating the entire path
of the ballot through the mixnet-like construction. That
is, the trusted computing platform does the following for
0 � i < I

a) If C(i) = 0 :
• Regenerate π(i,3) (do not publish it)
• For each ballot PAg =
fδg, qgn, qgn+1, . . . , qgn+n−1, s0, s1 . . . , sn−1g
that is print-audited:
i) Search for all elements in Q′i such that

the second component is δg . If there is no
such element, search for all elements in Q′i
such that the third component is δg . That is,
find all j′ such that Q′i(j′) = f�, δg, �, �g
failing which find all j′ such that Q′i(j′) =
f�, �, δg, �g. For all such j′:
– Compute j′′′ π(i, 3)(j′′) where j′′
π(i, 2)(j′) has already been computed in
the tally computation audit,

– Publish π(i, 3)(j′′). Compute
and publish the subkey used to
commit to π(i,3)(j′′): κπ(i,3)(j

′′)
Subkey(K, f“π”, 3, i, j′′g),

– Publish S′′′i (j′′′). Compute and publish
the commitment subkey for this value:

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 11

κsi,j′′′ Subkey(K, f“s”, i, j′′′g).
b) If C(i) = 1:
• Regenerate π(i,2) (do not publish it)
• For each ballot PAg =
fδg, qgn, qgn+1, . . . , qgn+n−1, s0, s1 . . . , sn−1g
that is print-audited:
i) Search for all elements in Q′i such that

the second component is δg . If there is no
such element, search for all elements in Q′i
such that the third component is δg . That is,
find all j′ such that Q′i(j′) = f�, δg, �, �g
failing which find all j′ such that Q′i(j′) =
f�, �, δg, �g. For all such j′:
– Compute j′′ π(i, 2)(j′). Note that
j′′′ π(i, 3)(j′′) has already been com-
puted in the tally computation audit,

– Publish π(i,2)(j′). Compute and publish
the subkey used to commit to π(i,2)(j′):
κπ(i,2)(j

′) Subkey(K, f“π”, 2, i, j′g),
– Publish Q′i(j′). Compute and publish

the commitment subkey for this value:
κxi,j′ Subkey(K, f“x”, i, j′g) where x
= fαg, βg, γg, qg.

F. Correctness Proofs

We summarize the proofs of correctness that verifying
agents A can perform and explicitly state conditions under
which the proof completes successfully. Note that in general
the best practice response to proofs that do not complete
successfully (i.e., fail) is an open policy question, and not con-
sidered here. Specifically in case of voter receipts however, a
failed receipt check has a dispute resolution process described
in section II-C.

Note that, for the print audit and tally check correctness
proofs, A will verify commitments. In particular, A will
confirm that all commitment keys that were challenged as a
result of the challenge coin-tosses and the print-audit were
responded to (i.e., published on BB) during steps 2 and 3 in
the previous section. For all commitment keys κx to message
x posted to BB during the audit, A searches BB for the
corresponding message x and commitment value �x, and tests
whether Decommit(κx, x, �x) outputs 1 (valid). This verifica-
tion step is successful if and only if all of A’s executions of
Decommit() output 1.

Receipt Check: For all challenges C(i) = 0 and 0 � j <
(b�n), A locates permutations π(i,2), code lists Q′i and recorded
mark lists R′′i on BB. A reconstructs the assertion of the voting
system, that Q′i(j) is marked or not marked as indicated by
the mark value R′′i (π(i,2)(j)).

This verification step successfully verifies voter-receipt
V Rg = fβg, γg, qgn+dg if and only if A is able to conclude
that all reconstructed assertions agree with V Rg . Specifically
for 0 � i < I , V Rg is said to agree with the assertions if
fβg, γg, qgn+dg exists at position j in Q′i, if R′′i (π(i,2)(j)) = 1,
and if all other occurrences of βg and γg (that is, all n � 1
other values of tuples fβg, γg, qgn+d̂g found at positions Q′i(ĵ)
correspondingly show recorded mark R′′i (π(i,2)(ĵ)) = 0.

Print Audit: A reconstructs assertions of the code-
candidate associations of each print-audited ballot. For all
i, 0 � i � I , and for each print-audited ballot PAg =
fδg, qgn, qgn+1, . . . , qgn+n−1, s0, s1 . . . , sn−1g

1) A searches for all elements in Q′i such that the sec-
ond component is δg . If there is no such element, A
searches for all elements in Q′i such that the third
component is δg . That is, A finds all j′ such that
Q′i(j′) = f�, δg, �, �g failing which A finds all j′ such
that Q′i(j′) = f�, �, δg, �g. For all such j′:
• A locates permutation element π(i,2)(j′), com-

putes j′′ π(i,2)(j′), locates permutation element
π(i,3)(j′′), computes j′′′ π(i,3)(j′′),

• A locates R′′i (j′′) and S′′′i (j′′′),
• The assertion is that Q′i(j′) is the confirmation

number corresponding to the candidate S′′′i (j′′′) and
that the unique ballot with one serial number δg has
not been voted.

2) This verification step successfully verifies the print-
audited ballot if it agrees with the assertions. That is,
if A is able to obtain n values of j′ and conclude that,
8j′:
• The corresponding commitments were opened cor-

rectly,
• fδg, qgn+ιg 2 Q′i(j′) for some ι such that 0 � ι �
n�1 and that each value of ι corresponds to exactly
one value of j′,

• R′′i (j′′) = 0,
• S′′′i (j′′′) = sι.

Tally Check:
1) A will check that the corresponding commitments were

opened correctly
2) A will verify BB self-consistency:

a) For all challenges C(i) = 0 and 0 � j < (b � n),
A locates permutations π(i,2), code lists Q′i and
recorded mark lists R′′i on BB. A reconstructs
the assertion of the voting system, that Q′i(j) is
marked or not marked as indicated by the mark
value R′′i (π(i,2)(j)). This verification step suc-
cessfully verifies BB self-consistency if all public
voted confirmation numbers correspond exactly to
R′′i (π(i,2)(j)) = 1.

b) For all C(i) = 1, A locates π(i,3), R′′i and
S′′′i on BB. For all j, A reconstructs the as-
sertion of recorded mark R′′i (j) made for can-
didate S′′′i (π(i,3)(j)), and computes the election
outcome by tallying each of these assertions. He
checks the declared tally against the computed
tally. This verification step successfully verifies BB
self-consistency if the two tallies are identical.

IV. SECURITY ANALYSIS

In the previous section, we described the verification proofs
for receipt checks, the tally check, and print-audited ballots.
In this section, we both quantify the effectiveness of the
verification and consider the security of the Scantegrity II to

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 12

additional attacks, most involving a procedural element not
easily captured by a cryptographic description. Thus, the goal
of this analysis is to sketch the security heuristics underlying
the design, and not to rigorously prove security properties in
a formal cryptographic model.

We consider three categories of attacks. The first category
are manipulation attacks, in which the goal of the attacker is to
manipulate the final tally so that the election’s outcome is more
favorable to the attacker’s preferred candidate(s). The second
are identification attacks, where the goal of the attacker is to
form a link between voting intent and ballot receipts. The final
category are disruption attacks, in which the attacker wishes to
prevent the completion or certification of the election. Since, in
general, disruption attacks are applicable in any voting system,
and difficult to prevent, we will only consider a special-case of
disruption involving the prevention of certification of any tally
in the event the attacker feels the results may be unfavorable.

In order to best frame this discussion we note that, as
an enhancement to optical scan, Scantegrity II is inherently
constrained by our design goal of non-interference with the
underlying optical scan processes. For this reason, Scanteg-
rity II is designed to be a strict improvement over optical
scan systems with manual recounts. However, components
which cannot be secured without intervening in the underlying
processes of optical scan are not pursued.

A. Assumptions

The level of security of Scantegrity II depends on the nature
of the attack. Critical components offer probabilistic security
that is invariant to the adversary’s computational power, while
other components premise their security on one or more
assumptions, both procedural and cryptographic in nature.
The security setting of our analysis includes the following
assumptions,

1) The existence of a trusted computing platform for use
by election officials (contra identification attacks),

2) The set of collusive officials in the election authority
does not satisfy the threshold requirement for recovery
of the master key (identification and disruption),

3) Chain-of-custody over the printed ballots prior to voting
day (identification),

4) The inability of voters and others to read codes printed
in invisible ink (manipulation, identification),

5) Proper balancing of the pollbook (manipulation),
6) The intractability of obtaining information about a mes-

sage given only its cryptographic commitment (identifi-
cation), and

7) The intractability of opening a cryptographic commit-
ment of a message differing from that message initially
committed to (manipulation).

In our view, most of these assumptions are reasonable and
standard in the literature. The trusted platform is a scaled-
down computing device, with no external memory, running
software attested by the trustees that performs the crypto-
graphic operations. To avoid collusion among trustees, they
could be selected from competing political parties. Using a
threshold scheme allows the election to proceed even if a group

of trustees is unable, or refuses, to supply their key share.
Prior to the election, printed ballots must be protected against
an adversary revealing codes and reprinting substitute ballots.
Assumption 4 is unique to our approach and we provide
justification for it in Section V. “Balancing the pollbook”
refers to the assumption that the sum of the number of
voted, tallied and spoiled ballots is equal to the number of
cast ballots, which is not larger than the number of voters.
Assumptions 6 and 7 are referred to as the hiding and binding
properties of commitments respectively in the previous section.

B. Manipulation Attacks

1) Printing: An adversary may misprint ballot Bg , so that
the code qgn+d̂ associated with candidate sd̂ in the master list
P is printed beside a different candidate sd (or all candidates)
on the same ballot. If the adversary then modifies any EBIg
associated with such a misprinted ballot such that rgn+d̂ = 1
and rgn+d = 0, the system will count the vote for sd̂ and report
qgn+d as the confirmation code, which is consistent with what
appears on the ballot.

The print audit mechanism, described in section III, is
designed to make such an attack detectable by revealing dis-
crepancies between printed ballots and Q′i, using commitments
Q̄′i under assumption 7. If the number of ballots chosen to be
print-audited is 0 � ba � b where b is the number of ballots
in the election overall, the probability of detecting at least 1
of 1 � bf � b misprinted ballots is,

Pr[detection] = 1�
(
b−bf

ba

)(
b
ba

)
=

(b� bf)!(b� ba)!
b!(b� bf � ba)!

(1)

2) Voting: One line of manipulation attack can exist in
systems that are not diligent in spoiling ballots [4], [21]. If
an attacker has a line of communication with the voter, the
voter can be instructed to mark her ballot and wait for further
instruction. The attacker then communicates to the voter to
either spoil the ballot or cast it. If the spoiled ballot is not
protected or destroyed, the attacker may consult it to see how
the voter would have voted had the attacker instructed the voter
to cast the ballot. The line of communication can be eliminated
by using random material on the ballots to determine the
instruction, in a way analogous to the approach of making
interactive protocols non-interactive. Scantegrity II avoids this
line of attack by having spoiled ballots shredded in front of
the voter, without the poll worker seeing the contents of the
ballot.

A second line of manipulation attack can exploit the pres-
ence of undervoted ballots. An attacker may add additional
marks to a contest left empty by the voter during a recount
or appropriately modify the digital records.1 This attack is not
introduced by Scantegrity II and exists in any optical scan
voting system. One method of prevention is to require each

1Although this issue was previously known to the authors, we acknowledge
David Wagner for raising it in private correspondence.

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 13

voter to mark a “none of the above” selection when denoting
an undervote. Similarly, an attacker might try to prevent a
correctly-cast ballot from being tallied by overvoting it; this
attack is prevented by not allowing any overvoted ballots to
be cast.

3) Auditing: Consider a manipulation attack based on
swapping voter-made marks in R′′i from one candidate to
the attacker’s preferred candidate. To prevent this attack, with
probability 1

2 , each back-end will be challenged to open the
correspondence between the lists R′′i and Q′i, and any modi-
fied mark states for these instances will be incongruent with
the voter receipts. The attacker may gamble, only modifying
marks in roughly half of the back-end instances in the hope
that exactly these will have challenge C(i) = 1 and thus
that, instead, that the correspondence between the lists R′′i
and S′′′i is instead revealed in the modified instances i. The
probability of doing so is 2−I . However if a different subset
is revealed, the tallies across the subsets will differ and the
attack is detectable. Alternatively, the attacker might modify
R′′i for all instances 1 � i � I , which guarantees self-
consistent tallies but also guarantees the attack is detectable by
the receipt check protocol. At first glance this may seem to be
an irrational strategy until one considers the possibility of only
a small subset of voters actually checking their receipts. With
I instances, br � b ballots actually cast, bc ballot receipts
checked, and bm modifications to each R′′i , the probability
of detection is (br � bm)!(br � bc)!/br!(br � bm � bc)!. The
adversary will choose the least detectable of the two strategies,
thus,

Pr[det.] = min(1� 1
2I
, 1� (br � bm)!(br � bc)!

br!(br � bm � bc)!
). (2)

By estimating bc and bounding bm as half of the smallest
margin of victory we can certify an election for, we can use
this equation to determine a suitable I for our implementation
such that the first term exceeds the estimated value of the
second. In most instances, I = 10 is suitable.

A second approach to manipulating the tally is to change
the final state of the ballots. Ballots can have one of three
states: voted, print-audited, or spoiled. Under assumption 5,
we assume that modifications must preserve the number of
ballots in each state. If a voted ballot is maliciously modified
to be spoiled, a spoiled ballot must be converted into a voted
ballot. To prevent these transitions, the voter retains positive
evidence of ballots being in a voted state: knowledge of both
serial numbers, fβg, γgg. Alternatively, for a print-audited
ballot, the voter retains positive evidence a ballot was print-
audited via knowledge of all the confirmation codes on the
ballot, fqgn, qgn+1 . . . qgn+n−1g but only one of fβg, γgg.
Both pieces of information would be unknown to the voter
if the ballot were in any other state when the voter left the
polling place.

In the case of spoiled ballots, the voter does not retain
anything. However, if a spoiled ballot is maliciously converted
into a voted ballot, a voted ballot will need to be spoiled,
and the corresponding voter can prove malfeasance through
knowledge of both chit serial numbers.

The transition from a spoiled to print-audited state is im-
portant for different reasons. This transition does not change
the tally directly, however it is indirectly useful in facilitating
the first manipulation attack presented in Section IV-B2. By
misreporting a spoiled ballot as print-audited, the confirmation
codes on the ballot would be released during the verification
process allowing a coercer to see if the ballot matched the
conditions of the contract for spoiling the ballot. Under
assumption 5, this attack will be detectable as it requires a
print-audited ballot to be made into a spoiled ballot. To prevent
this attack, the trustees could first publish a list of ostensibly
spoiled ballots prior to releasing the print audit confirmation
codes. If an auditor discovers her print-audited ballot is in the
wrong state, the discrepancy can be caught prior to releasing
the codes.

C. Identification Attacks

1) Initialization: The earliest opportunity for identification
occurs during the election initialization process. Successfully
changing or introducing faults into the initialization protocol
could generate a permutation of P or subsequent lists that is
known to the attacker. This is not possible if the protocol is
run on a trusted computing platform and assumption 1 holds.
Without direct interference with the protocol, the attacker may
provide structured data instead of randomness in the protocol.
However under assumption 2 and the construction of the
threshold key generation scheme, any amount less than the
minimum threshold of shares leaks negligible information for
the purposes of determining the key.

2) Printing: After the ballots are printed, a number of
identification attacks may be conduced including the addition
of revealing marks on the ballots or revealing the codes on
the ballots, recording these codes, and reprinting the ballots
with unrevealed ink. The prevention of these attacks is based
on assumption 3.

3) Auditing: After the election has concluded, the data
generated and published for voter-verification of the tally must
meet the requisite ballot secrecy. Given no information other
than the tally, a certain level of information can be obtained
about which candidate a voter selected. The tally provides a
probability distribution for the possible selections and may
even exclude selections, based, for example, on a candidate
receiving zero votes. This level of information is often legally
required and thus acceptable. If the attacker is provided, in
addition, with the information on each voter’s receipt, further
information is revealed: how many marks the voter made and
the codes associated with these marks. Our assertion of ballot
secrecy is that no additional information is leaked about the
association between a mark and code on a receipt and any
element in the set of selections in the tally.

Opening only one of the commitments to either (a) the
correspondence between confirmation codes Q′i and voter
marks R′′i or (b) the correspondence between voter marks
R′′i and candidates S′′′i reveals negligible information about
permutations π(i,3) or π(i,2) respectively. Hence the association
between Q and S is always hidden by one cryptographic
permutation. The commitment to the permutation key, if

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 14

binding, uniquely identifies the permutation however reversing
the commitment is assumed intractable by assumption 6.

D. Disruption Attacks

In general, disruption attacks are easy to detect but difficult
to prevent. Many of the manipulation attacks could be recon-
structed as disruption attacks, and the same mechanisms would
detect them. However, as stated, we limit our consideration
to disruption for the purpose of preventing the certification
of an undesired tally (or an expected undesired tally, if the
information is based on exit polls for example).

1) Initialization: During the initialization phase, each
trustee in the election authority supplies entropy to seed the
random number generator used to generate all the permutation
keys and commitment secrets needed in the election. Instead of
maintaining state, since the state information would need to
remain private, when the tally and audit challenge/response
phases are entered, the trustees re-enter their key shares
to recreate all the necessary data. To prevent a malicious
trustee from withholding their entropy or supplying the wrong
entropy, we use a threshold key generation scheme (optionally
with robustness to a finite number of errors). Under assumption
2, a suitable threshold will allow the reconstruction of the data
despite malicious trustees.

2) Auditing: During the auditing phase, an attacker may
file a spurious dispute about the results of a receipt-check.
Since the election authority has committed to the confirmation
codes that appeared on the ballot, it can rule out any claimed
codes that did appear on the ballot. Thus, filing a spurious
but plausible dispute reduces to randomly guessing another
code on the ballot. The election authority can quantify the
probability of this and create an appropriate statistical trigger
that predicts actual receipt-check problems. Let n be the
number of candidates on a candidate list L for a particular race
and let �l be the cardinality of the set of unique confirmation
codes. The probability of guessing a plausible code on a voted
ballot is p = (n� 1)/(�l � 1). If D disputes are filed and G
are considered plausible, the expected value of G if disputes
are fabricated is µ = D �p. We set the trigger value τ such that
the probability of obtaining at least τ plausible discrepancies
if all filed disputes are random guesses is less than 1%. We
can use the following bound on the right tail of the binomial
distribution [13]. For any r > µ, Pr[G� µ � r] � (µe/r)r.

For example, for 5 candidates, 8000 possible codes, and
1000 disputes filed, assuming no scanning error, p =
4/7999 = 0.0005 and µ = 1000 �0.0005 = 0.5. Using r = 4.5
we get Pr[G � 5] � (0.5e/4.5)4.5 = 0.0046 < 0.01, so
we can set τ = 5. If at least 5 out of the 1000 disputes
filed are plausible discrepancies, then an investigation should
be instigated. To allow for up to some acceptable rate s of
scanning error, we can incorporate s into the probability p of
guessing a correct code and compute the statistical trigger as
above with the new value of p.

V. INVISIBLE INK DETAILS

In this section, we describe the main categories of threats
that might take advantage of the properties of invisible ink,

our assumptions about ink properties, and the procedures for
printing the inks on the ballot. Greater detail is available in
[5].

A. Threats

Note that the only threats to Scantegrity II that take ad-
vantage of the limitations of the ink are those that are based
on

1) Distinguishing between confirmation codes and their
backgrounds.
The ability to distinguish would allow:

a) voters to falsely claim election fraud, and
b) anyone with access to ballots to violate ballot

secrecy by connecting confirmation codes to se-
lections

2) Distinguishing between chit serial numbers and back-
grounds.
The ability to distinguish would allow

a) voters to claim that an uncast ballot was cast
b) anyone with access to uncast ballots to connect chit

serial numbers and confirmation codes with voter
selections (in combination with (1))

3) Distinguishing between the two-dimensional barcode
and background.
The ability to distinguish would allow anyone with
access to marked ballots to connect two-dimensional
bar-codes with voter selections

B. Assumptions

The main security assumption about the inks is that the slow
and fast-reacting inks used for printing confirmation codes and
oval backgrounds respectively are not distinguishable before,
and sufficiently after, they have been marked with the ballot-
marking pen (“sufficiently after” is taken to mean that the time
period is long enough to allow the slow-reacting ink to react).
We make a similar assumption about the indistinguishability
of the chit serial numbers and the two-dimensional barcode
from their background.

Note also that the assumptions we make are about physical
properties of chemicals, and the detectability of differences.
Clearly, most chemicals (if not all) can be distinguished
from one another through a sufficiently sophisticated test; our
arguments are that, for all practical purposes, our assumption
holds, and we describe here our efforts to make it more
difficult to distinguish among the inks, particularly by the
naked or microscopically-aided human eye.

Finally, the ability to distinguish enables voters to make
false charges of election fraud, and anyone to connect infor-
mation about ballot choices with confirmation codes and serial
numbers. If voters are assumed to not have access to ballots
outside the polling booths, or to specialized equipment (includ-
ing the decoding pen) inside the booth, the indistinguishability
assumption is only required to hold with respect to the human
eye in order to prevent false charges of election fraud.

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 15

C. Procedures used for printing with the inks

In this section we describe ways in which the indistinguisha-
bility assumptions may be defeated, and our efforts to preserve
indistinguishability. Note that the inks proposed for printing
on ballots can be used in regular ink-jet printers.

1) To prevent the soaking of paper: Any type of ink used
by inkjet printers soaks into the paper. Even if the ink used
to print the codes would be completely invisible, the soaked
paper would allow the codes to be easily read. To avoid this,
we use two types of ink: a reacting ink used to print the
background of the oval and a slow-reactive ink used to print
the confirmation codes. Both inks have the same color (a light
yellow) if printed on the same piece of paper. The reacting ink
turns black immediately when it interacts with the ink of the
marking pen, while the ink used for the codes undergoes the
same reaction at a slower pace. Thus, the immediate result is
a yellow confirmation code inside a black oval—the highest
contrast color combination. After several minutes, the slow
reacting ink will have reacted leaving the oval completely
black.

2) To avoid the overlapping of inks: We divide the oval
in small square tiles called texels. Each texel is entirely
printed with either reactive or slow-reactive ink, but never
with a combination of them. A small constant-sized gap is left
between any two adjacent texels, such that when two adjacent
tiles are printed with different inks, the two inks never overlap
even if they diffuse outward as they absorb into the paper.
Without such a gap, a border of overlapping types of ink could
emerge, under a microsocope, for example, making the border
easier to detect. Additionally, we ensure that the position of
the code in the oval is not fixed; the codes can be shifted left
or right.

3) The addition of confusing fluorescence: The use of
special types of radiation can expose invisible inks. We apply
a third type of ink that we call a masking ink. It is colorless
but has high fluorescence. Masking ink is the last ink sprayed
onto the paper. We add random amounts of masking ink to
all texels of the oval. This is designed to mask the eventual
difference in fluorescence between the reactive ink and slow
reactive ink used for the codes, as well as a cover to prevent
lifting particles from the paper with tape.

4) Ballot-marking pens: While this paragraph is not about
security properties of the inks used, it is relevant to the
discussion of Scantegrity II procedures with respect to inks,
and is hence described here. The ballot-marking pens that we
use to mark the ovals have a tip that is wider than the height
of the oval. A voter can mark the entire oval using a single
strike of the pen which is faster than penciling in the mark.
Even if the voter pens in more than the oval, the result is a
clean, perfectly filled oval. The use of invisible ink also deters
stray dark marks that can confuse scanners, although the light
yellow hue of the ink could still be visible. The portion of the
chit reserved for the voter to record the confirmation codes
can also have a solid layer of the same reacting ink, so that
the voter may record the codes with the same pen.

VI. SCANTEGRITY II FOR VOTERS WITH DISABILITIES

In this section we describe modifications to Scantegrity II
to allow its use by those voters who have visual or motor
disabilities, and hence cannot mark a Scantegrity II paper
ballot. These modifications are inspired by those for Punchscan
and Prêt à Voter described in [10]. In our approach, the
voter is presented with an audio ballot and interacts with the
voting system using a microphone and headphones. The voting
system prints the vote on a Scantegrity II ballot. The voter
with visual disabilities also has access to a trusted interactive
device that translates a visual signal into another type of signal,
such as an audio signal; this device is used to check a marked
ballot. Finally, all voters using the audio interface have access
to a personal voice recorder used to record the confirmation
number. Details of our approach follow.
Filling a Ballot: The voter is presented the choices for each
race through the headphones, and communicates her choice to
the voting system through the microphone. The voting system
communicates the vote to a printer. The printer prints, on a
Scantegrity II ballot, with the ink also used in the Scantegrity II
pen, a blob on the corresponding oval, exposing the code
as with ballots for other voters. Assistive devices that have
been used in the past to help voters with visual or motor
disabilities may also be modified for the purpose of filling a
Scantegrity II ballot. Examples of such devices include Tactile
Ballots which have been used in elections in Rhode Island
[17], and the Voting-on-Paper Assistive Devices (Vote-PADs),2

which consist of a plastic ballot-sleeve, tactile indicators, and
an audio tape recording, customized for each election and
ballot design.
Checking a Marked Ballot for Correctness: The voter who
does not have visual disabilities, but has motor disabilities that
make it difficult to mark ballots, may check the correctness
of the filled ballot, and dictate the confirmation code into a
personal (trusted) voice recorder.

The voter with visual disabilities will use a trusted inter-
active device—consisting of a trusted scanner with optical
character recognition (OCR) and speakers—to check that the
ballot is correctly marked. The voter may bring such a device
with her to the booth, or may be provided one by a trusted
third party, such as a public interest group. With the aid of
this device, the voter may translate a marked Scantegrity II
ballot into an audio signal, and determine if it has been
correctly marked. Additionally, this device would read aloud
the confirmation number, which could be taped into a personal
(trusted) voice recorder.
Casting the Ballot: Once a ballot has been correctly marked,
it may be processed like any other marked Scantegrity II ballot.
Print Audits: If ballots given to voters using this procedure to
vote are drawn at random from the pile of ballots for all voters,
print audits are applicable to a ballot marked as described
above. Further, a voter with visual or motor disabilities can
also perform a print audit by marking audit ballots as described
above.
Security Properties: This approach does not provide the same
security guarantees to voters with visual disabilities as those

2Accessible voting without computers. http://www.vote-pad.us/

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 16

provided to other voters, who need not rely on a trusted device
in the polling booth. A compromise of the trusted device can
result in a compromise of the integrity of the vote, as well
as in an opportunity for a coercive adversary. On the other
hand, the only implemented voting systems that are usable
by voters with visual disabilities—DREs, optical scan ballot
systems with assistive devices, or Prime III [14]—require that
the voter either trusts the voting system itself, or the chain of
custody on the ballot box or a paper/audio audit trail. These
are stronger assumptions than the requirement that a personal
device be trusted by a voter. Thus, the above modification
of Scantegrity II, like those of Punchscan and Prêt à Voter
described in [10], provides a much-needed accessible version
of voter verifiability—where the voter may determine that her
vote is among those tallied, and that the collection of votes
is tallied correctly—without having to trust a device provided
by election officials.

VII. RELATED WORK

The use of cryptography in voting originates in 1981 with
Chaum [6]. The ensuing decades saw the introduction of
many electronic voting systems using cryptography to achieve
both privacy and integrity. Only more recently have schemes
emerged where voters use paper ballots and/or obtain paper
receipts; for example, Prêt à Voter [11], Punchscan [15], [16],
[26], Scratch & Vote [1], ThreeBallot [27], Simple Verifiable
Voting [3], Split-Ballot Voting [22], and the protocol of Neff
[24]. Public key techniques have dominated the cryptographic
verification of tally computation; for example, the universally
verifiable mixnet of Sako and Kilian [28], and the tally
correctness proofs of Furukawa and Sako [18], and Neff [23].

A scheme by Chaum [7] was the first to provide the voter
with a receipt for the purposes of verifying the presence of her
vote in the vote collection, without requiring her to have access
to trusted computational power while casting her vote. The first
use of a perforated ballot, where a voter can take a perforated
part of the ballot out of the polling booth as a receipt, appears
in Prêt à Voter. ThreeBallot [27] also uses a perforated ballot.
Scratch & Vote was the first to provide a string to the voter
that was obtained only after the voter performed an action
on the ballot (scratching off a layer), it was also the first to
use 2D barcodes. The light use of cryptography is inspired
by the verification protocols in previous systems including
“Votegrity” [7] and Punchscan, combined with the mixnet
auditing technique of randomized partial checking [19]. The
approach towards providing accessibility draws from [10].

VIII. CONCLUDING REMARKS

We have demonstrated a simple and effective way to dra-
matically increase the transparency of elections that use optical
scan voting systems. It is our hope that its adoption will help
prevent the manipulation of election outcomes, and that it may
lead to renewed confidence and participation in democracy.

REFERENCES

[1] B. Adida and R. L. Rivest, “Scratch & Vote: self-contained paper-based
cryptographic voting,” in Proceedings of the 5th ACM Workshop on
Privacy in Electronic Society (WPES), pages 29–40, 2006.

[2] S. Ansolabehere and C. Stewart, “Residual votes attributable to tech-
nology,” The Journal of Politics, 67, pages 365–389, 2005.

[3] J. Benaloh, “Simple verifiable elections,” in Proceedings of the 2006
USENIX/ACCURATE Electronic Voting Technology Workshop (EVT),
2006.

[4] J. Benaloh, “Ballot casting assurance via voter-initiated poll station
auditing,” in Proceedings of the 2007 USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT), 2007.

[5] R. T. Carback, “Printing secure automatic receipts
with activating ink,” Technical Report, 2009. Available:
http://scantegrity.org/˜carback1/ink/ink.pdf

[6] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, 24(2), pages 84–90, 1981.

[7] D. Chaum, “Secret-ballot receipts: true voter-verifiable elections,” IEEE
Security and Privacy, 2(1), pages 38–47, 2004.

[8] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest,
P. Y. A. Ryan, E. Shen, and A. T. Sherman, “Scantegrity II: end-to-
end verifiability for optical scan election systems using invisible ink
confirmation codes,” in Proceedings of the 2008 USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT), 2008.

[9] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. T.
Sherman, and P. Vora, “Scantegrity: end-to-end voter verifiable optical-
scan voting,” IEEE Security and Privacy Magazine, 6(3), pages 40–46,
2008.

[10] D. Chaum, B. Hosp, S. Popoveniuc, and P. L. Vora, “Accessible voter
verifiability,” Cryptologia, 33(3), pages 283–291, 2009.

[11] D. Chaum, P. Y. Ryan, and S. A. Schneider, “A practical, voter-verifiable,
election scheme,” Technical Report Series CS-TR-880, University of
Newcastle Upon Tyne, December 2004.

[12] W. Clarkson, T. Weyrich, A. Finkelstein, N. Heninger, J. A. Halderman,
and E. W. Felten, “Fingerprinting blank paper using commodity
scanners,” in Proceedings of the 30th IEEE Symposium on Security
and Privacy, pages 301–314, 2009.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to algorithms, 2nd edition,” MIT Press, McGraw-Hill Book Company,
2000.

[14] E. Vincent Cross II, Y. McMillian, P. Gupta, P. Williams, K. Nobles, and
J. E. Gilbert, “Prime III: a user centered voting system,” in Proceedings
of the 2007 Conference on Human Factors in Computing Systems (CHI),
pages 2351–2356, 2007.

[15] A. Essex, J. Clark, R. T. Carback, and S. Popoveniuc, “Punchscan in
practice: an E2E election case study,” in Proceedings of the 2007 IAVoSS
Workshop on Trustworthy Elections (WOTE), 2007.

[16] K. Fisher, R. Carback, and A. T. Sherman, “Punchscan: introduction and
system definition of a high-integrity election system,” in Proceedings
of the 2006 IAVoSS Workshop on Trustworthy Elections (WOTE), 2006.

[17] M. Fresolone, “Tactile ballots: alternative voting
method for the blind,” Technical Report. Available:
http://www.votersunite.org/info/tactileballots.asp

[18] J. Furukawa and K. Sako, “An efficient scheme for proving a shuffle,”
in Proceedings of the 21st Conference on Advances in Cryptology
(CRYPTO), LNCS 2139, pages 368–387, 2001.

[19] M. Jakobsson, A. Juels, and R. L. Rivest, “Making mix nets robust for
electronic voting by randomized partial checking,” in Proceedings of
the 11th USENIX Security Symposium, pages 339–353, 2002.

[20] D. Jones. “Voting on paper ballots,” Report. Available:
http://www.cs.uiowa.edu/˜jones/voting/paper.html

[21] J. Kelsey, A. Regenscheid, T. Moran, and D. Chaum, “Hacking paper:
some random attacks on paper-based E2E systems,” presented at
Frontiers of Electronic Voting, 2007.

[22] T. Moran and M. Naor, “Split-ballot voting: everlasting privacy with
distributed trust,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS), pages 246–255, 2007.

[23] C. A. Neff, “A verifiable secret shuffle and its application to e-
voting,” in Proceedings of the 8th ACM Conference on Computer and
Communications Security (CCS), pages 116–125, 2001.

[24] C. A. Neff, “Practical high certainty intent verification
for encrypted votes,” Technical Report, 2004. Available:
www.votehere.net/old/vhti/documentation/
vsv-2.0.3638.pdf

[25] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in
Proceedings of the 1991 Workshop on the Theory and Application of
Cryptographic Techniques (EUROCRYPT), LNCS 547, pages 522–526,
1991.

[26] S. Popoveniuc and B. Hosp, “An introduction to Punchscan,” in
Proceedings of the 2006 IAVoSS Workshop on Trustworthy Elections
(WOTE), 2006.

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 17

[27] R. L. Rivest and W. D. Smith, “Three voting protocols: ThreeBallot,
VAV, and Twin,” in Proceedings of the 2007 USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT), 2007.

[28] K. Sako and J. Kilian, “Receipt-free mix-type voting scheme: a practical
solution to the implementation of a voting booth,” in Proceedings of
the 1991 Workshop on the Theory and Application of Cryptographic
Techniques (EUROCRYPT), LNCS 921, pages 393–403, 1995.

[29] R. Saltman, “Accuracy, integrity, and security in computerized vote-
tallying,” Technical Report, NIST SP 500-158, August 1988.

[30] T. R. Weiss, “As primary season ramps up, an e-voting snapshot,”
Computerworld, January 8, 2008.

David Chaum founded DigiCash, Inc., where he
was CEO from 1993-1998. Before that, he built
and lead the Cryptography Group at Centrum voor
Wiskunde en Informatica (Center for Mathematics
and Computer Science), Amsterdam, Netherlands,
from 1985-1992. He has also held positions at UC
Santa Barbara and at NYU Graduate School of
Business.

Dr. Chaum has published over 45 original techni-
cal articles and received over 17 US patents. He is
widely considered to have invented secure electronic

voting, with a paper describing a technique for anonymous electronic voting
in 1981, and several papers since. He is also generally associated with the
invention of electronic money and anonymous credential. He was the first
to propose: mix networks, dining-cryptography networks, blind signatures,
untraceable credentials, minimum disclosure, group and undeniable signatures.
He has also made early and fundamental contributions to the area of multiparty
computations.

Dr. Chaum is founder of the International Association for Cryptographic
Research (IACR) and co-founder of Workshop on Trustworthy Elections
(WOTE), a series of conferences and its sponsoring organization the Interna-
tional Association for Voting Systems Sciences (IAVOSS).

He received a PhD and an M.S. in Computer Science from the University
of California, Berkeley, in 1983 and 1980 respectively.

Richard T. Carback was born in Baltimore, MD.
Mr. Carback has a Master’s Degree in computer
science from the University of Maryland, Baltimore
County (UMBC) that was awarded in May 2008.
Mr. Carback is currently pursuing a doctorate in
computer science at UMBC.

He is a Research Associate for Convergent Tech-
nologies Incorporated of Baltimore, MD, supporting
computer security development and training efforts.
Previously, he has worked as a Research and Teach-
ing Assistant at UMBC, and a Software Engineer

at L-3 GSI, Inc. His research interests include end-to-end election systems,
privacy enhancing technologies, virtual systems security, computer network
operations, cryptology, and other topics in computer security and information
assurance.

Jeremy Clark is pursuing the Ph.D. in computer sci-
ence at the University of Waterloo. He is a member
of the Centre for Applied Cryptographic Research
(CACR) and the Cryptography, Security and Privacy
(CrySP) research group. He holds the M.A.Sc. in
electrical engineering from the University of Ottawa
in 2007, and the B.E.Sc. in computer engineering
from the University of Western Ontario in 2004.

He is a recipient of the Alexander Graham Bell
Canada Research Scholarship. His research interests
are in applied cryptography and game theory.

Aleksander Essex is pursuing the Ph.D. in electri-
cal and computer engineering at the University of
Ottawa where he is a member of the Information
Security Research Group. He holds the M.A.Sc. in
electrical engineering from the University of Ottawa
in 2008, and the B.E.Sc. in computer engineering
from the University of Western Ontario in 2004.
His research interests are in applied cryptography,
engineering design, and voting technologies.

Stefan Popoveniuc has a Ph.D. from The George
Washington University, where he focused on com-
puter security and privacy in general and on elec-
tronic voting in particular. His thesis provided a
general framework that allows election officials to
evaluate and take informed decisions when pur-
chasing end-to-end voting systems. Dr. Popoveniuc
is a founding member of the PunchScan team; he
has fully implemented a number of voting systems,
PunchScan, Scantegrity and Scantegrity II being
just three of them. Currently, Dr. Popoveniuc is an

election technology consultant in the Washington D.C. area.

Ronald L. Rivest is the Viterbi Professor of Com-
puter Science in MIT’s Department of Electrical
Engineering and Computer Science. He is a member
of MIT’s Computer Science and Artificial Intelli-
gence Laboratory (CSAIL), a member of the lab’s
Theory of Computation Group and is a leader of its
Cryptography and Information Security Group. His
research interests are in cryptography, computer and
network security, algorithms, and voting systems.

Professor Rivest is an inventor of the RSA public-
key cryptosystem, and has extensive experience in

cryptographic design and cryptanalysis. He is a founder of RSA Data Security
and a co-founder of Verisign and of Peppercoin.

Professor Rivest is a member of the National Academy of Engineering,
the National Academy of Sciences, and is a Fellow of the Association
for Computing Machinery, the International Association for Cryptographic
Research, and the American Academy of Arts and Sciences. He also serves
on the EPIC Advisory Board.

Together with Professors Adi Shamir and Len Adleman, Professor Rivest
has been awarded the 2002 ACM Turing Award. He has received an honorary
degree (the ”laurea honoris causa”) from the University of Rome. In 2005, he
received the MITX Lifetime Achievement Award; in 2007, he received both
the Computers, Freedom and Privacy Conference ”Distinguished Innovator”
award, and the Marconi Prize.

He received a B.A. in Mathematics from Yale University in 1969, and a
Ph.D. in Computer Science from Stanford University in 1974. He has served
as a Director of the International Association for Cryptologic Research, and
of the Financial Cryptography Association. Most recently, he has served on
the Technical Guidelines Development Committee, an advisory board to the
U.S. Election Assistance Commission.

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY: SPECIAL ISSUE ON ELECTRONIC VOTING 18

Peter Y. A. Ryan Peter Ryan was awarded a PhD in
theoretical physics from the University of London,
UK. Since February 2009 he is Professor of Infor-
mation Security at the University of Luxembourg.
Before moving to Luxembourg, he was a professor at
Newcastle University. His research interests include
cryptography, modelling and verification of crypto-
graphic protocols and secure systems, verifiable vot-
ing systems and quantum information assurance. He
has served on the PC of many security conferences
and has served as program chair for several. He was

the chair of the Steering Committee of ESORICS from 1999-2007.

Emily Shen received the B.S. degree in computer
science from Stanford University in 2006 and the
S.M. degree in electrical engineering and computer
science from Massachusetts Institute of Technology
(MIT) in 2008. She is currently pursuing the Ph.D.
degree in electrical engineering and computer sci-
ence at MIT.

She is a recipient of the Bell Labs Graduate
Research Fellowship. Her research interests are in
cryptography and computer security.

Alan T. Sherman earned the PhD degree in com-
puter science at MIT studying under Ronald L.
Rivest, the SM degree in electrical engineering and
computer science from MIT, and the ScB degree
in mathematics, magna cum laude, from Brown
University. He is an associate professor of computer
science at the University of Maryland, Baltimore
County (UMBC) in the CSEE Dept., Director of
UMBCs Center for Information Security and As-
surance, and a member of the National Center for
the Study of Elections at UMBC. His main research

interest is high-security voting systems. Sherman has carried out research
in election systems, algorithm design, cryptanalysis, theoretical foundations
for cryptography, and applications of cryptography. Dr. Sherman is also a
private consultant performing security analyses, an editor for Cryptologia,
and a member of Phi Beta Kappa and Sigma Xi.

Poorvi L. Vora is an Associate Professor in the
Department of Computer Science at The George
Washington University in Washington, D.C, where
she has been on the faculty since 2003. Before
2003, she worked at Hewlett-Packard Co. in various
positions in HP Laboratories, as well as in the
Imaging and Printing Group (IPG).

Prof. Vora’s current research interests are in the
application of ideas from communication theory and
signal processing to problems in security, such as
electronic voting, cryptology and counterfeit deter-

rence.
Prof. Vora has a B. Tech. (Electrical and Electronic Engineering) from IIT

Mumbai, (1986), an M. S. and Ph. D. (Electrical Engineering) from North
Carolina State University (NCSU, 1988 and 1993) and an M. S. (Mathematics)

